Building a Deep Learning Machine – Part 3: Installing the SSD, RAM, GPU, PSU, and Motherboard/Power Connections.

I completed building the deep learning machine this past weekend. I will describe the final steps for assembling the hardware in this Part 3 and discuss the OS installation in Part 4.

Solid State Drive
The build has a 500 GB Samsung 960 EVO M.2 solid state storage drive. The drive uses the NVMEe protocol which can be utilized by the M.2 socket with ‘M’ keying (read more about keying here). The Strix X99 M.2 socket runs on a PCIe 3.0 x4 lane which it shares with a U.2 connector. The socket is compatible with the following SSD sizes: 2242/2260/2280/22110. The first two numbers ’22’ are the width (22 mm), and the remaining numbers are the length (42 mm, etc.). The M.2 socket was designed to provide faster link speeds than the mini-SATA connector. The SATE 3.0 has a link speed of up to 6 GB/s versus the PCIe 3.0 x4 lane which runs up to 20 GB/s. The 960 EVO has sequential read/write speeds up to 3.2 GB/s and 1.8 GB/s. Read more about the performance difference between SATA and M.2 at PCWorld here.

Samsung 960 EVO M.2 SSD with 500 GB

When inserted into the M.2 socket, the SSD will be angled upward. I first install a hex head jack screw to raise the screw mount even with the socket and press the SSD onto the jack screw while screwing the mounting screw into the jack screw.

RAM

I have started the build with two 16 GB DDR4 RAM cards.

I initially installed the two RAM cards in the D1 and B1 motherboard locations as recommended by the motherboard manual and as shown below.

After completing the installation and booting the machine, the BIOS utility only recognized the RAM in the B1 slot though the D1 slot is recommended as the first slot to use with one card.

Bios utility recognizes 16GB RAM in the B1 slot.
BIOS utility recognizes a card in the D1 slot but does not recognize the size.

When I researched this issue, the first solutions I found recommended overclocking the motherboard with increased RAM slot voltage to permit using additional RAM cards. In this case, I moved the card in D1 to A1, and the BIOS utility recognized two cards and 32 GB RAM. I recommend moving RAM cards to another slot as the first troubleshooting step when a card is not recognized.

BIOS utility recognizes both cards in the A1 and B1 slots.

GPU

The build will begin with one EVGA GTX 1080 Ti 11GB graphical processing unit. Tests have shown the 1080 Ti performance is comparable to the more expensive Titan X for machine learning applications. The motherboard has 3 PCIe x16 slots and is suited to run two GPU utilizing x16 PCIe lanes each or three GPU in a x16/x8/x8 configuration.

EVGA GTX 1080 Ti GPU
The GTX 1080 Ti fits into a 16 lane PCIe slot.

The Strix X99 motherboard has two PCIe x16 slots and one PCIe x8 slot, and the first GPU is installed in the first slot.

Strix X99 16x PCIe lane

PSU

I chose a EVGA 1000 GQ power supply unit for the build. Since the absolute peak load for a GTX 1080 Ti that is overclocked is 350 W, the 1000 W PSU will be sufficient for an upgrade to two GPUs. The EVGA 1000 GQ comes with one ATX 20+4-pin cable for the main motherboard power supply, two 8(4+4)-pin CPU cables, two standalone 8(6+2)-pin and four 8(6+2)-pin x2 cables, three SATA 5-pin x4 cables, one Molex 4-pin x3 cable, and one Molex to FDD adapter. The ‘4+4’ notation indicates that two 4 pin male cables are wired adjacently to connect with either an 8 or 4 pin female connector.

I recommend connecting all required cables to the PSU prior to installing in the case since access to the rear of the PSU is restricted inside the case. The Phanteks Eclipse P400 case has an exhaust port along the case bottom for the PSU fan.

Motherboard and Power Connections

Once the PSU is installed, I complete the build by making all remaining motherboard and power connections. The GTX 1080 Ti requires one 8 pin and one 6 pin VGA cable.

The motherboard has a 4-pin header for the water pump and a 4-pin header for the CPU fan. The water pump power connector has holes for 3 pins and should be connected to the 3 header pins aligned with the bar as shown below. The fourth pin left of the water pump connector has no bar behind it. The fourth header pin would allow pump/fan speed control via pulse width modulation. The CPU fan has holes for four pins.

The chassis is connected to the motherboard with the following connections. The power, reset, and HD audio connections are shown in the upper left corner of the image below. The chassis USB 3.0 ports are connected in the center connector. The front panel audio connector is shown in the upper right.

The CPU is powered with both the 8-pin and 4-pin ATX connectors. The CPU water cooler is powered with a 15-pin SATA connector from the PSU as shown below in the upper left corner.

After binding the wires in the chassis behind the motherboard, the machine hardware build is now complete! In Part 4, I will describe the OS and software installation.